pokročile hledaní
» LED

Změnit jazyk

PolskiAngielskiNiemieckiRosyjskiCzeski

Kontakt

Tipy obchodu

Názory o výrobcích

Statistika

  • Aktuální počet zákazníků na stránce: 1
  • Obchod navštívilo: 1183197 zákazníků
  • Obchod existuje od: 10-10-2010

LED

LED (z anglického Light-Emitting Diode - dioda emitující světlo) je elektronická polovodičová součástka obsahující přechod P-N. Narozdíl od klasických diod, LED vyzařuje viditelné světlo, infra případně UV v úzkém spektru barev a používá se v široké řadě aplikací.

Prochází-li přechodem elektrický proud v propustném směru, přechod vyzařuje (emituje) nekoherentní světlo s úzkým spektrem. Může emitovat i jiné druhy záření. Tento jev je způsoben elektroluminiscencí.

Pásmo spektra záření diody je závislé na chemickém složení použitého polovodiče. LED jsou vyráběny s pásmy vyzařování od ultrafialových, přes různé barvy viditelného spektra, až po infračervené pásmo. Poměrně dlouho trval vývoj modré LED, na nějž čekal jeden z projektů ploché barevné televizní obrazovky.

Z principu funkce LED vyplývá, že nelze přímo emitovat bílé světlo - starší bíle zářící diody většinou obsahují trojici čipů vybíraných tak, aby bylo aditivním míšením v rozptylném materiálu vrchlíku obalu diody dosaženo vjemu bílého světla.

Protože není možné přímo emitovat bílé světlo, pravé bílé LED využívají luminoforu. Některé bílé LED emitují modré světlo, část tohoto světla je přímo na čipu luminoforem transformována na žluté světlo a díky mísení těchto barev vzniká bílá. Jiné typy bílých LED emitují ultrafialové záření, to je přímo na čipu luminoforem transformováno na bílé světlo.

Se zkracující se vlnovou délkou emitovaného světla roste velikost potřebného elektrického proudu a z toho vyplývajícího napětí. U křemíkové diody je toto napětí asi 0,6 V, u zelené LED z GaP 1,7 V a u modré z SiC již 2,5 V.

Základní monokrystaly diod bývají překryty kulovými vrchlíky z epoxidové pryskyřice nebo akrylového polyesteru. Materiály, z nichž se LED vyrábějí, totiž mají poměrně vysoký index lomu a velká část vyzařovaného světla by se odrážela totálním odrazem zpět na rovinném rozhraní se vzduchem.

Oproti jiným elektrickým zdrojům světla (žárovka, výbojka, doutnavka) mají LED tu výhodu, že pracují s poměrně malými hodnotami proudu a napětí. Z toho vyplývá jejich užití v displejích (ve tvaru cifer a písmen). Kombinací LED základních barev (červená, zelená, modrá) je možno získat i barevné obrazovky.

Konstrukčně představují LED součástku, v níž je kontaktovaný čip (nebo kombinace čipů) zastříknut materiálem s požadovanými optickými vlastnostmi (LED se vyrábějí v bodovém či rozptylném provedení, s různým vyzařovacím úhlem). Kontakty mohou být v provedení pro povrchovou montáž (SMD) nebo ve tvaru ohebných či poddajných přívodů. Sestavy více LED, pouzdřené společně mohou mít samostatně vyveden každý čip, společnou anodu či katodu nebo jiný systém kontaktování dle zamýšleného užití (například dvojbarevné diody).

Nick Holonyak Jr. (narozen 1928) na University of Illinois at Urbana-Champaign vyvinul první praktickou LED s viditelným spektrem v roce 1962.
 

Zapojení vývodů

alt
alt
Bližší záběr na LED diodu, jsou zde vidět vnitřní struktury.
+- of LED.svg
alt

Na rozdíl od žárovek, u kterých nezáleží na polaritě napájecího napětí a jsou schopny tedy pracovat na střídavé napětí, LED zapojené nesprávným způsobem nepracují. Když je napětí na P-N přechodu diody zapojené správně, říkáme že je zapojena v propustném směru a v tomto stavu skrz ní prochází proud. Když je zapojené opačně než má být, říkáme že je zapojená v závěrném směru a neprochází skrz ní téměř žádný proud a ani nevyzařuje žádné světlo. Proud v propustném směru u nízkopříkonových LED se pohybuje od 1-2 mA, u standardních LED 10~25 mA až po proudy nad 1 A u speciálních LED používaných v osvětlovací technice. Některé LED jsou schopny pracovat se střídavým napětím. V takovém případě jsou ale rozsvíceny jen polovinu periody, ve které jsou polarizovány propustně. Periodicky se tak rozsvěcují a zhasínají s frekvencí střídavého zdroje. Řešením pro odstranění tohoto jevu může být antiparalelí zapojení dvou diod.

I když jediným 100% přesným způsobem, jak zjistit polaritu vývodu LED, je podívat se do jejího katalogového listu, tak jsou zde některé obvykle platné způsoby pro její označení, pozor podle velikosti P nebo N vývodu uvnitř pouzdra často nelze polaritu stanovit tak jako v tabulce a bývá i obráceně:

znaménko: +
polarita: kladná záporná
výstup: anoda (A) katoda (K)
vývod: dlouhý krátký
pouzdro z vnějšku: zakulacené ploché
uvnitř pouzdra: menší větší
barevně: červená černá

Méně spolehlivé metody pro určení polarity jsou:

znaménko: +
označení pouzdra: nic proužek
číslo vývodu: 1 2
DPS: kruhový čtvercový

Protože napěťová charakteristika LED je vzhledem k proudové charakteristice prakticky stejná jako u jakékoliv jiné diody (proud vzhledem k napětí roste přibližně exponenciálně), malá změna napětí vyvolá obrovskou změnu proudu. Při výrobě jednotlivých kusů LED mohou nastat drobné odchylky, které by při paralelním zapojení LED způsobily rozdílnou svítivost, nebo dokonce zničení LED s VA charakteristikou posunutou blíže k nule. Proto se LED vždy zapojují se sériovým odporem.

Díky tomu, že u diody napětí je logaritmicky vztaženo k proudu, tak se dá v rozsahu, ve kterém LED pracuje (svítí) považovat za konstantní. Tedy se dá říct, že je spotřebovaná energie prakticky jen funkcí proudu. Pokud chceme zajistit stálý odběr energie s ohledem na různé charakteristiky napájení a LED, tak bychom měli použít pro napájení diod proudový zdroj. Pokud nevyžadujeme vysokou účinnost zapojení(například u různých indikátorů), můžeme se přiblížit proudovému zdroji tím, že připojíme LED v sérii s rezistorem omezujícím protékající proud ke zdroji stálého napětí(změny napětí vyvolají menší změny proudu). Tento způsob je běžně používán.

Většina LED má taky nízké průrazné napětí, takže mohou být zničeny přiložením závěrného napětí i o výši jen několika voltů. Protože někteří výrobci nedodržují standardy označení uvedené výše, tak by mělo být v katalogovém listu vždy pokud možno vyhledáno, jak je to u daného konkrétního typu diody. Nebo můžeme polaritu zjistit zkouškou, kdy diodu zkusíme připojit ke zdroji nízkého napětí v sérii s ochranným rezistorem.

Regulace jasu LED

Obecně platí: čím více proudu, tím více světla. Nejjednodušší (a nejčastější) způsob nastavení proudu diodou je pomocí předřadného odporu (který je zapojen v sérii s diodou LED). K regulaci jasu LED je možné použít i jednoduchý regulátor s tranzistorem, až po trochu složitější pulzně šířkový modulátor - PWM. LEDkou protékají krátkodobé impulzy proudu. Tyto impulzy se přivádějí v daleko vyšší frekvenci, než je lidské oko schopné zachytit, takže LEDka vypadá jako by svítila trvale. Změnou střídy pak měníme jas. Jedná se o řešení používané zejména v zapojeních s mikrokontroléry.

Pokud máme dostatečně velké napětí, můžeme propojit několik LED do série pouze s jedním omezujícím rezistorem. Paralelní zapojení je obvykle problém. LED musí být stejného typu kvůli tomu, aby měly co nejpodobnější prahové napětí. Rozdíly ve výrobním procesu mohou způsobit, že zapojení nebude fungovat.

Další typy LED

Vícebarevné LED zařízení obsahují dvě paralelně zapojené, opačně polarizované, diody, každá jiné barvy (typicky červená a zelená), umožňující zobrazit dvě barvy, nebo rozsah škály barev, změnou poměru dob po kterou jsou jednotlivé diody rozsvíceny. Jiné zase obsahují sadu diod rozdílných barev uspořádaných do skupin zapojených se společnou anodou nebo katodou. Zde můžeme dosáhnout širší škály různých barev bez toho, že bychom museli měnit polaritu napájení (např. často používaná RGB LED - červená, zelená a modrá).

LED obvykle stále svítí, když skrze ně prochází proud, jsou ale dostupné i blikající LED. Ty mají stejný technologický základ, navíc obsahují klopný obvod, který způsobí, že LED bliká (typicky s periodou jedna sekunda). Nejběžněji jsou k dostání v červené, žluté nebo zelené barvě. Většina jich svítí pouze jednou barvou, ale jsou k dostání i vícebarevné.

Existují speciální typy LED se zabudovanými rezistory. Můžeme tak ušetřit místo na desce plošných spojů. To může být zvlášť užitečné při konstrukci prototypů, nebo při změnách zamýšleného zapojení (když potřebujeme udělat změny už na hotové desce). Často se využívají pro indikaci v automobilové technice, kde mají vestavěný předřadný odpor pro 12 V.

Např. v dálkovém ovládání od televize můžeme vidět infračervené LED. Také se používají v IrDA, pro komunikaci elektronických zařízení na malé vzdálenosti. Pouhým okem toto záření není vidět, ale protože CCD snímače v digitálních kamerách jsou na toto záření citlivé, jsou infračervené LED nedílnou součástí některých bezpečnostních kamerových systémů.

Pro speciální účely se vyrábí ultrafialové LED. Tyto LED jsou instalovány v zařízeních pro kontrolu ochranných prvků bankovek, nebo jiných dokumentů.

Charakteristické hodnoty napětí v propustném směru

Pro obyčejné LED v 3 mm nebo 5 mm pouzdrech, jsou charakteristické následující hodnoty napětí v propustném směru. To závisí na technologii výroby, typu použitých polovodičů, teplotě a protékajícím proudu (hodnoty zde uvedené přibližně pro hodnotu 20 mA)

Barva Úbytek napětí
Infračervená 1,6 V
Červená 1,8 V až 2,1 V
Oranžová 2,2 V
Žlutá 2,4 V
Zelená 2,6 V
Modrá 3,0 V až 3,5 V
Bílá 3,0 V až 3,5 V
Ultrafialová 3,5 V

U mnoha LED je uváděno maximální závěrné napětí 5 V.

  Barva vlnová délka (nm) Napětí (V) Látka
  Infračervená λ > 760 ΔV < 1.9 GaAs
AlGaAs
  Rudá 610 < λ < 760 1.63 < ΔV < 2.03 AlGaAs
GaAsP
AlGaInP
GaP
  Oranžová 590 < λ < 610 2.03 < ΔV < 2.10 GaAsP
AlGaInP
GaP
  Žlutá 570 < λ < 590 2.10 < ΔV < 2.18 GaAsP
AlGaInP
GaP
  Zelená 500 < λ < 570 1.9 < ΔV < 4.0 InGaN/GaN
GaP
AlGaInP
AlGaP
  Modrá 450 < λ < 500 2.48 < ΔV < 3.7 ZnSe
InGaN
SiC
Si
  Fialová 400 < λ < 450 2.76 < ΔV < 4.0 InGaN
Červená/modrá + fialový luminofor
  Ultrafialová λ < 400 3.1 < ΔV < 4.4
Diamant (Vlnová délka: 235 nm)

Nitrát Borný (Vlnová délka: 215 nm)
AlN (Vlnová délka: 210 nm)
AlGaN
AlGaInN — (Vlnová délka: pod 210 nm)

  Bílá Celé spektrum ΔV = 3.5 Modrá/ultrafialová + žlutý luminofor  

Výhody použití LED

  • Produkují více světla na watt energie než žárovky (nejmodernější přes 100 lm/W), to je užitečné v zařízeních napájených bateriemi, nebo v úsporných zařízeních (česky řečeno, mají vyšší účinnost).
  • Mohou vyzářit světlo v požadované barvě bez použití složitých barevných filtrů.
  • Jejich pouzdro může být navrhnuto k soustředění světla na určité místo. Světelné tepelné (žárovky) a fluorescenční (zářivky) většinou potřebují k soustředění světla vnější optickou soustavu.
  • V zařízeních, kde potřebujeme funkci „stmívání“ nemění svou barvu při snížení napájecího proudu, na rozdíl od žárovek, které při snížení napájení vydávají žlutější světlo.
  • Jsou odolné vůči nárazům.
  • Jsou ideální na použití v zařízeních, kde dochází k častému vypínání a zapínání zařízení, na rozdíl od žárovek, které mohou při častém zapínání a vypínaní snadno shořet.
  • Mají extrémně dlouhou životnost. Jeden z výrobců vypočítal odhadovanou dobu životnosti jejich LED mezi 100 000 a 1 000 000 hodin (neplatí pro výkonné LED, tam mohou být značně menší hodnoty). U zářivek je obvyklý údaj 8 000 - 12 000 hodin a u typických žárovek 1 000 – 2 000 hodin.
  • Nejčastější příčinou jejich selhání je postupný úbytek jasu, na rozdíl od žárovek, u kterých se nejčastěji přeruší vlákno.
  • Velice rychle se rozsvítí. Typický červený LED indikátor se rozsvítí v řádu mikrosekund. LED používané v telekomunikačních zařízeních mohou mít tyto doby i mnohonásobně kratší.
  • Jsou velice malé a snadno mohou být osazeny do desky plošných spojů.
  • Neobsahuji rtuť (na rozdíl od zářivek).
alt
alt
LEDs jsou vyráběny v mnoha různých tvarech a velikostech. 5 mm velké v cylindrickém pouzdru (červená, pátá zleva) je nejobvyklejší, odhadem se podílí na 80% celkové produkce. Barva plastické čočky pouzdra je obvykle stejná, jako barva vyzařovaného světla, ale nemusí to být pravidlem. Například pro infračervené diody je obvykle používáno purpurové pouzdro a pro modré zase čiré.

Nevýhody LED

  • Mají vyšší pořizovací náklady (počítáno v ceně za lumen), než tradiční světelné zdroje. Další náklady také vychází z toho, že jedna dioda poměrně slabě září (Pozn.: Dnešní LED dosahují již velmi vysokého světelného toku), a proto jich potřebujeme větší množství . Nicméně pokud si vezmeme celkové náklady (včetně udržovacích), daleko překonávají žárovky a halogenové zdroje světla.
  • Jejich výkonnost hodně závisí na teplotě okolního prostředí. Používání LED na hranici proudových specifikací může vést k přehřátí pouzdra LED diody a k následnému selhání zařízení. V případech vyšších teplot se musí zajistit dostatečné chlazení. To je obzvláště důležité v automobilech a zařízeních pro vojenské nebo lékařské účely, které musí fungovat v širokém rozsahu teplot a jsou u nich kladeny vysoké požadavky na spolehlivost.
  • Musí být napájeny správným proudem.
  • Obvykle vyzařují světlo jen v úzkém paprsku v jednom směru.
  • Světlo z bílých LED diod může zkreslovat barvy
  • Nemohou být použity v aplikacích, kde potřebujeme ostře směrový paprsek světla. LED nejsou schopny směrovosti pod několik stupňů. Pokud potřebujeme směrovější zařízení, je lepší použit Laser (nebo LED lasery).
  • Roste znepokojení z toho, že modré a bílé LED jsou teď schopny poškodit zrak – oko je výrazně citlivější na modré a „bílé“ světlo a přílišná intenzita, která je použitá u LED diod může oko především v noci poškodit. Dnešní diody jsou schopny překračovat bezpečnostní limity specifikované v ANSI/IESNA RP-27.1-05: Recommended Practice for Photobiological Safety for Lamp and Lamp Systems.

Aplikace, ve kterých jsou LED využity

alt
alt
Starý LED displej použitý v kalkulačce.
alt
alt
Jediná superjasná LED společně se skleněnými čočkami je schopna vytvořit přenosový kanál, který může přenášet video v DVD kvalitě na značnou vzdálenost. Toto zařízení, RONJA, může snadno postavit každý elektrotechnický nadšenec.
alt
alt
Osvětlení LED na Audi S6
  • Architektonická osvětlení
  • Indikátory stavu na všech typech zařízení
  • Dopravní světla a značení
  • Světelný zdroj pro systémy automatické kontroly, kde je vyžadováno jasné, soustředěné a homogenní světlo
  • Označení nouzových východů
  • Světla na motocyklech a kolech
  • Hračky a pomůcky pro rekreační sporty
  • Světla na železničních přejezdech
  • Ve svítilnách
  • Jako indikátory
  • Některé typy LED diod jsou schopny reagovat na světlo - fotostřelnice, fototerče, světelná čidla, ...
  • Úzké a lehké informační tabule odjezdů a příjezdů na letištích a železničních stanicích
  • Červené nebo žluté LED jsou používány pro osvětlení přístrojů – například v hodinkách, ponorkách, ve vojenských přístrojích apod.
  • Červené, žluté, zelené a modré LED mohou být použity pro modely železnic
  • Dálková ovládání často využívají infračervených LED
  • V optických vláknech, nebo v bezdrátových optických systémech
  • V maticových uspořádáních jako zobrazovače informací
  • Díky jejich dlouhé životnosti a krátké době odezvy na zapnutí, LED jsou používány v automobilech, autobusech a nákladních autech v brzdných světlech. U nejmodernějších vozidel se začínají používat LED v celém zadním panelu světel. Dostáváme tak spolehlivější a praktičtější osvětlení, protože jsou LED schopny užšího světelného paprsku, než klasicky používané žárovky s parabolickými reflektory. Nejdůležitější změnou je rychlost rozsvícení světla (asi tak o 0,5 sekundy rychleji než žárovka). To dává řidičům širší prostor pro reakci na události na silnici. Při běžných rychlostech používaných na dálnici znamená při zabrzdění půl sekundy navíc reakční prostor o délce jednoho auta pro následující auto.
  • Jako podsvícení pro LCD televize a displeje. Dostupnost LED v požadovaných barvách umožňuje zdroj světla s téměř úplným viditelným spektrem.
  • Osvětlovací prostředky nové generace bývají vybaveny LED v červeno-zeleno-modrém uskupení (základní barvy, jejichž kombinací lze dosáhnout velké části viditelného spektra barev.
  • V Lumalive, světlo vyzařující textilii.
  • Jako referenční zdroj napětí průměrné kvality. Úbytek napětí v propustném směru (například 1,7 V pro běžnou červenou LED) může být použit jako reference namísto Zenerovy diody v nízkonapěťových regulátorech. Přestože úbytek napětí závisí mnohem víc na proudu než u dobré Zenerovy diody, Zenerovy diody nejsou dostupné pro napětí nižší než 3 V.
  • Použití v počítači, pro monitorování aktivity pevného disku a identifikaci zapnutí. Někteří výrobců počítačů používá LED k přitáhnutí pozornosti uživatele (osvětlení komponent). Spousta jich také používá LED k identifikaci stavu počítače (například stav standby).
  • V lucernách
  • Ve velkoplošných obrazovkách s kombinací červené, zelené a modré LED lze vytvořit až 160 000 000 barev.
  • LED emitující infračervené světlo našly široké uplatnění v dálkových ovladačích spotřební elektroniky (TV, videa, domácí kina, satelity). Určitou nevýhodu může být jen v některých případech malý dosah ovladače nebo i umístění přijímače na místo osvětlené sluncem, kdy je přijímač již zahlcen infračerveným zářením ze slunce natolik, že váš dálkový ovladač prostě ignoruje. V mobilních telefonech se používaly v dnes již zastaralé technologii přenosu dat známé pod zkratkou IrDa. Tuto technologii vytlačil mnohem rychlejší přenos dat známý pod názvem Bluetooth.

Světelné zdroje pro systémy strojového snímání

Systémy strojového snímání často vyžadují jasné a homogenní osvětlení, aby dokázaly lépe vykonávat požadovanou činnost. LED jsou často k tomuto účelu využívány, a na tomto poli zůstává jeden z jejich hlavních způsobů využití, dokud jejich cena neklesne natolik, aby byly využity v širším měřítku i v jiných oblastech. LED diody představují téměř dokonalý zdroj světla pro systémy strojového snímání z několika hlavních důvodů:

  • Velikost ozařovaného prostoru je obvykle poměrně malá a systém Vision nebo „chytré kamery“ schopné snímat i nedokonale osvětlené předměty jsou docela drahé. Proto je zde cena LED menší problém, když ji srovnáme s cenou telekomunikačních zařízení.
  • Elementy LED tíhnou k tomu být co nejmenší a mohou být osazeny ve velké hustotě na ploché nebo dokonce tvarované povrchy. To umožňuje osvětlit kontrolovanou část zdroji homogenního světla z přesně vymezených úhlů.
  • Mají nebo jsou snadno doplnitelné malými, levnými čočkami a rozptylovacím stínítkem, to pomáhá k dosažení vysokých hustot světla a kontroly nad světlem (jeho rozptylem).
  • Můžou být snadno použity k vytvoření záblesku (v řádu mikrosekund a méně), jejich síla je už dostatečně velká k dosažení dobře osvětlených obrázků i při velmi krátkém trvání světelného pulzu. Toho je využíváno v případě, kdy potřebujeme získat ostrý obraz rychle se pohybujících částí.
  • Jsou k dispozici v několika barvách a vlnových délkách, což umožňuje použít nejlepší barvu pro dané využití, kde různé barvy mohou přesněji osvětlit předmět zájmu.
  • Díky tomu, že mají přesně známé spektrum, tak se dají dobře nastavit barevné filtry, které se použijí k vyfiltrování získaných informací nebo ke snížení rušení okolním světlem.
  • Obvykle pracují při srovnatelně nižších teplotách než klasické zdroje.
  • Mohou být uspořádány v požadovaných uskupeních (poosvětlení pro vykreslení kontur, plochy, kopule pro světlo rozptýlené mnoha směry apod.)
  • Je možné díky ním zmenšit osvětlovací zařízení, to umožňuje osadit malé LED osvětlovače do „chytrých kamer“ nebo zobrazovacích senzorů.
Źródło - wikipedia

 


Jít na hlavni stránku
Oprogramowanie sklepu shopGold.pl

» przeczytaj wszystkie opinie